shannon指数的python实现
#coding
这里以稀释曲线的方式求香农指数。可以查看结果是否到达平台期来判断香农指数是否达到最大。
先来看看shannon指数的公式。
这里s是物种OTU,pi是该OTU的丰度。一般使用log2,也有使用ln的。
我的写法是这样的
# 首先将所有物种OTU按照出现次数(即reads数)加入到一个list中
# 比方说就是OTU1如果有10000条reads支持,在list中就有10000个OTU1元素
# 以下以OTU_list表示这个list
import random
from collections import Counter
import math
selectNum = 0
while selectNum < len(OTU_list):
# 随机抽取selectNum条组成新list
selectList = random.sample(OTU_list, selectNum)
# 计算随机抽取的结果里有多少Unique OTU
UniqueOTU = set(selectList)
# 计算各个OTU在随机抽取的list里的数量
countSelectList = Counter(selectList)
# 设置0值
H = 0
# 计算shannon指数
if len(selectList) != 0:
for u in UniqueOTU:
# 获得当前OTU的丰度
count_u = countSelectList[u]
pi = float(count_u) / len(selectList)
# log
logpi = math.log(pi, 2)
H += (logpi * pi)
# 获得当前抽取reads数下的shannon指数
H = H * (-1)
# 输出reads数和对应的shannon指数
print selectNum, H
# 梯度抽取,这里递加1000reads
selectNum += 1000